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Early-onset colorectal cancer: initial
clues and current views
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also discussed.

Early-onset colorectal cancer (EOCRC) is the second
most common cancer and the third leading cause of
cancer mortality in people <50 years of age in the USA'.
The incidence of EOCRC has been on the rise over the
past four decades' and is expected to increase by >140%
by 2030 (REFS*’). Incidence rates are inversely associated
with age?, and the rise in incidence and mortality from
EOCRC is global>**.

Despite a lack of complete datasets and rigorous
research, established cancer drivers have been linked to
EOCRC (such as diet, sedentary lifestyle, smoking and
alcohol)">’~. In addition, consensus exists that EOCRC
is a pathologically, epidemiologically, anatomically, met-
abolically and biologically different disease to late-onset
colorectal cancer (LOCRG; in patients >50 years old)'’.
Therefore, EOCRC must be investigated, evaluated and
managed differently to LOCRC. We suggest that several
known and unknown-but-suspected risk factors might
explain this alarming trend in the younger population.
Important to this discussion, bio-behaviours (that is,
behaviours that affect biological process, such as diet,
stress and exercise) have undergone a generational shift,
including the westernization of diets (calorie-dense and
nutrient-sparse) and an increase in physical inactivity,
leading to poor (colonic) health. Several solutions to
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Abstract | Over the past several decades, the incidence of early-onset colorectal cancer
(EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and
scientifically rigorous epidemiological studies have sifted out environmental elements linked
to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete.
Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and
suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence
implicating a strong effect of increased adiposity and suggest that certain behaviours (such as
diet and stress) might place nonobese and otherwise healthy people at risk of this disease.

Key risk factors are reviewed, including the global westernization of diets (usually involving

a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking
methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide,
and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the
crossroads of these risk factors and EOCRC. The time course of the disease and the fact that
relevant exposures probably occur in childhood raise important methodological issues that are

address these bio-behavioural risk factors are outlined
in detail throughout this Review.

To fully appreciate the genesis of EOCRC (and the
premise underlying this Review), it is essential to fully
understand what is known about exposomal elements
and the putative mechanisms by which the exposome'"'*
(possibly at critical periods of development) drives this
disease. The exposome encompasses the totality of
human environmental (that is, nongenetic) exposures
from conception onwards. The exposome consists of
three overlapping domains: the general external envi-
ronment (for example, socioeconomic factors, educa-
tion, climate factors, social capital and stress); specific
external environment (such as radiation, infections,
tobacco, alcohol, prescription drugs and antibiotics,
diet and physical activity); and internal environment
(for example, metabolic factors, hormones, gut micro-
biota, inflammation and oxidative stress)''. We contend
that the general external environment, such as perceived
stress and low socioeconomic status associated with poor
nutrition, probably contribute to the increased incidence
of EOCRC. We also discuss the possibility that specific
external environmental factors such as antibiotics, diet
and physical activity contribute to EOCRC and explore
putative mechanisms. Given that the microbiome and
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Key points

* The alarming rise in early-onset colorectal cancer (EOCRC) over the past four
decades described by epidemiological studies and cancer registry data requires
coordination and follow-up with mechanistic in vitro testing, animal experimentation
and human intervention studies.

* EOCRC occurs in both people who are obese and those who are nonobese, and the
rising incidence is global.

* Some solutions to EOCRC can be deployed now (for example, awareness
campaigns); some can be deployed with additional work to overcome barriers
(such as identifying surrogate end points); and some can deployed with money,
time, ingenuity and scientific rigour (for example, uncovering mechanisms and
gene—environment interactions).

* Key elements driving EOCRC are exposed when four metrics are fulfilled: one, a
temporal relationship exists that follows that of EOCRC; two, exposure is global,
as with EOCRC; three, evidence exists of inflammatory or microbiome-modifying
properties or evidence of an effect on the distal colon or rectum; and four, exposure
occurs during development from conception to adulthood.

* The following elements reach all four of the above metrics: a westernized diet
including red and processed meats; consumption of monosodium glutamate, titanium
dioxide, high-fructose corn syrup and synthetic dyes; obesity; stress; and widespread
use of antibiotics.

¢ Delineation of exposomal elements attacking the rectum versus colon and their
interactions with genetics is a critical step to understanding this disease for purposes
of chemoprevention and treatment.

inflammation are key internal exposome players, and are
widely recognized as being guardians of colorectal can-
cer (CRC)", we focus on these players as mechanisms at
the crossroads of the exposome and EOCRC.

Anatomy and pathology of EOCRC

The most consistent observation about EOCRC borne
out by the epidemiology is presentation at an advanced
stage — not only because of a more aggressive pathol-
ogy but often as a result of a delay of up to 6 months
from symptom onset to diagnosis'’. EOCRCs are typ-
ically found in the rectum and distal colon (left side)
with a high percentage of mucosal and signet cell pathol-
ogy relative to LOCRC (although percentages remain
small)'>'®. The appearance of EOCRC on the left side
gives clues as to the behaviour, causes and treatment
of such cancers. For example, left-sided colon cancers
are smaller, have lower recurrence rates, and longer

disease-free survival than right-sided colon cancers
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Left-sided tumour size tends to correlate positively with
lymph node involvement, and left-sided and right-sided
CRCs respond differently to treatment'”.

Cancers in the distal colon and rectum (important in
the context of EOCRC) are associated with a high intake
of red and processed meat, high lifetime alcohol intake,
and low fish and poultry intake'*-*. Risk is decreased on
the left side by consumption of dark yellow vegetables
and fruits, including apples*. Micronutrients such as cal-
cium, dietary polyphenols, garlic, choline and vitamin D
tend to be more closely associated with reduced risk of
left-sided colon cancer”~*'. Fibre intake and dairy con-
sumption reduces CRC risk throughout the colon®, and
zinc reduces rectal cancer risk in women™. Interestingly,
cyclooxygenase 2 (COX2) inhibitors are chemopreven-
tive in familial adenomatous polyposis (a disease of the
distal colon and rectum)**** but not Lynch syndrome
(a disease of the right and/or proximal colon)®. Aspirin
(which targets both COX1 and COX2) seems to be a
chemopreventive for the proximal colon, but not the
distal colon or rectum*. Such findings are worth con-
sidering when deciding which putative exposomal ele-
ments to pursue as prime suspects, for delineating the
mechanisms by which they behave, and for addressing
primary and secondary chemopreventive measures.

Finally, although obesity does not seem to be anatom-
ically selective for driving proximal colon versus distal
colon versus rectal cancers”, it substantially increases
the risk of CRC in patients with Lynch syndrome; this
increased CRC risk is abrogated by aspirin*. Of particu-
lar importance to this discussion is that the rise in inci-
dence of EOCRC is largely because of increased rates
of rectal cancer”. Indeed, rectal cancer differs from dis-
tal colon cancer with regard to tissue histology, cancer
pathology and aggressiveness*. Although molecu-
lar similarities exist between colon and rectal cancers,
molecular differences exist at the somatic and proteomic
levels***!, and therefore the exposomal elements might
be divergent. Delineation of exposomal elements affect-
ing the rectum versus the colon is a critical step to under-
standing this disease for chemoprevention and treatment
strategies.

Genetic and epigenetic elements in EOCRC
Hereditary syndromes and family history

Family history and hereditary conditions account for
~30% of EOCRCs"*»*. The total prevalence of muta-
tional burden is estimated at 16% in EOCRC, with half
of these being Lynch syndrome mutations and the other
half being other mutations (including adenomatous
polyposis coli (APC), monoallelic and biallelic MutYH,
and BRCA1/BRCA2 (REF*)). Importantly, a negative
family history does not exclude cancer hereditary syn-
dromes™ (for example, owing to poor communication
among families or other yet-to-be discovered inherited
genes). Thus, more research is needed to fully elucidate
the genetic profiles of patients with EOCRC.

Having a first-degree relative with a large or histo-
logically advanced adenoma increases the lifetime risk
of CRC by up to fourfold***. Therefore, guidelines rec-
ommend that such individuals initiate CRC screening
at 40 years of age”. Unfortunately, adherence to this
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recommendation in the young is low*’. Improving iden-
tification of — and screening in — this population is
an immediate step to curb the rising rates of EOCRC.
Barriers involved in such efforts need to be addressed,
including patient and provider awareness of the risk on
the basis of family history”’. Additionally, educational
efforts to promote CRC screening in average-risk indi-
viduals starting at 50 years of age might have uninten-
tionally deterred age-appropriate screening in those at
high risk. Physicians must recognize the risks and convey
these risks to their patients as well as promote individual
knowledge of family background. A concerted educa-
tional effort for both the general public and health-care
providers to routinely initiate a risk assessment for CRC
and develop a plan for age-appropriate CRC screening
prior to 40 years of age would save lives.

Although we might discover new genes coming from
Mendelian inheritance in certain families at high risk of
EOCRG, these factors would be unlikely to exert a mate-
rially large effect on reversing the trend in EOCRC in
entire populations. Certainly, the advancement of deep
learning tied to whole-genome deep sequencing might
shed more light on the genetics of EOCRC*. However,
regardless of genetic background, the problem of recog-
nition, awareness and education in this cohort remains.
For example, many patients find out they have Lynch
syndrome after a CRC diagnosis™. Even screening adher-
ence rates in known mutation carriers are highly variable
and often sub-par (aslow as 53%)*>*. Ongoing efforts to
recognize these high-risk families and improve screening
adherence in mutation carriers can have a major effect
on familial cancer risks, which should, in turn, have an
effect on the overall rate of EOCRC. Just as these edu-
cational deficiencies are being addressed in innovative
ways (such as social media campaigns and personalized
web-based interfaces)*>*, accurate and appropriate
screening techniques are also needed for these families.
Guidelines for the genetic evaluation and management
of hereditary CRC syndromes have been reviewed,
assessed and updated on the basis of current knowledge
and rigorous science™ . To this end, deep learning algo-
rithms that consider surrogate biomarkers and exposo-
mal factors in combination with genetic profiling, as well
as the integration of microbiome profiles, inflammatory
load and other mechanisms that drive EOCRC, will
advance our understanding of the disease. Indeed, such
risk models have been developed for LOCRC cohorts®-**
and for hereditary cancer syndromes such as Lynch syn-
drome’***%°. However, sensitivity and specificity are far
from perfect even in these models.

EOCRC has a different signature to LOCRC

EOCRGC:s tend to be microsatellite stable (MSS) and near-
diploid, and multiple alterations of chromosome num-
ber, chromosomal rearrangements, or gene amplification
and/or deletion of oncogenes and/or tumour suppressors
continue to be identified. Up to 63% of EOCRCs with
MSS are euploid (chromosomal instability-negative)®.
EOCRC is also associated with a higher percentage
of synchronous (5.8% versus 1.2% for LOCRC) and
metachronous (4.0% versus 1.6% for LOCRC) tumours®’.
Microsatellite and chromosome-stable tumours are

common in EOCRC and are associated with a posi-
tive family history and rectal location (60% of micro-
satellite and chromosome-stable tumours are rectal)®.
Another recognized feature of EOCRC is genome-wide
hypomethylation in a subset of patients"*>®, which
seems to be correlated with chromosomal instabil-
ity and poor prognosis®®. Some of the key players
involved in LOCRG, including KRAS codon 12 muta-
tions, have been identified as drivers of EOCRC®**"".
Indeed, it would also be wise to catalogue differences in
molecular signatures of rectal versus distal colon cancer.
To this end, subclassifications of EOCRC on the basis
of genomic signatures have been proposed”’. For more
details on molecular changes associated with EOCRC
the reader is guided to other reviews>*>**”2 Interesting
and consistent findings in young people with CRC
include a relatively high rate of KRAS mutations, LINE-1
hypomethylation and TP53 mutations®’*”*. BRAFV60E
mutations and/or APC mutations occur infrequently
in EOCRC™.

Exposomal elements in EOCRC
Although genetic predisposition is extremely relevant
in EOCRG, it does not account for the observed trends in
diagnosis. Approximately 70% of EOCRCs might be
driven by the exposome in the presence or absence of
a previous somatic mutation(s), or rare gene variants
(with variable degrees of penetrance). Exposome sci-
ence suggests that certain windows of vulnerability (for
disease risk) and opportunity (for health promotion)
can be leveraged for prevention purposes. As for CRC
in older individuals, epidemiological studies of EOCRC
have identified diet’”~"’, alcohol®, smoking'**' and lack
of physical activity™ as risk factors. As some of these fac-
tors are becoming more predominant early in life and,
therefore, becoming more prevalent in successive gener-
ations, questions arise as to whether exposomal elements
— especially in the early years of life” — could interact
with underlying genetic background factors to trigger
EOCRC. Indeed, for an algorithm that generates a life-
style index (encompassing smoking, alcohol consump-
tion, diet, waist-hip ratio and exercise participation),
a high score is associated with a 27% reduction in risk
of rectal cancer in Chinese men®. Given the increasing
incidence of rectal cancer in the young®****, similar
studies are worth pursuing in other parts of the world.

To sift out the suspects affecting EOCRC, the fol-
lowing facts about the disease must be considered: one,
EOCRC incidence and mortality have been increasing
since the 1980s**%*%; two, EOCRC is a global phenom-
enon™’; three, CRC development is linked to chronic
inflammation®® and dysbiosis®’; four, EOCRC occurs
mostly in the distal colon and rectum™; five, evidence
suggests that CRC can develop as a result of insult years
earlier®®"; six, specific early-life exposomal elements
(some linked to EOCRC such as diet and obesity) effect
the onset of disease later in life’*’'; and seven, people
across the BMI spectrum develop EOCRC (although
there is a propensity towards patients with EOCRC
being overweight)**#-92%,

With this knowledge, it makes sense to focus on the
exposomal elements that meet the following metrics:
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Table 1| Exposomal elements driving EOCRC

Exposomal element Temporal Global Effect on inflammation/ Exposure during

trend trend microbiome or known effect development (conception
on distal colon or rectum to adulthood)

Westernized diets Yes'* Yes'* Yes!#5:118 A

Red and processed meat YeSZO,140,157,158 YesZO,140.157,158 Ye5160,161.253.254 YeSZO,157.158

ObESIty Ye5101,103,140 Yeslol.103,l40 Ye5108,109 Y651057107

Stress YeSHS Yesll7 YESZSS,Z% Yesll8,119,257

Antibiotics Yes?® Yes'®® Yes'oo171 Yes'®?

Synthetic dyeS Yesléib,ZUO YeslSI),ZOO Yesl‘)Z,l‘Ji,ZS‘),ZbO YeSZOU

Monosodium glutamate ~ Yes”*"*% Yes?©1207 Yes?01:202:263-265 Yes”®!

Titanium dioxide YeSbe Yeslbb YeSZUG‘ZU&ZOQ,ZW Yeslob,ZU'/‘be

High-fructose cornsyrup = Yes?!0215268  Yeg?!0215:268  Ygg?16:269 Yes’!’

Key exposomal suspects driving early-onset colorectal cancer (EOCRC) emerge when four metrics are fulfilled: first, a temporal
relationship exists, similar to EOCRC; second, exposure is global, as is EOCRC; third, molecular evidence exists of inflammatory
or microbiome-modifying properties or evidence of an effect on the distal colon or rectum; and four, exposure occurs at any time

during development from conception until adulthood.

first, the exposomal element must have a similar tem-
poral trend to that of EOCRC; second, the trend should
be global; third, the exposomal element must have
inflammatory or microbiome-modifying properties
or evidence of an effect on the distal colon or rectum;
and fourth, the exposomal element should be present
during development (conception to adulthood). With
such benchmarks in mind, some unusual suspects
might become prime suspects. Although alcohol and
smoking seem to be associated with EOCRC, this link is
demonstrated mostly in the older EOCRC subcohort™.
Substantial direct exposure from alcohol and cigarettes
that affects the pathology of the colon during childhood
is unlikely. Epidemiological studies have, so far, failed
to reach a conclusion regarding physical activity. Some
studies suggest that physical activity does not distinguish
between the right and left colon®, whereas other stud-
ies suggest that physical activity suppresses cancers of
the right colon but neither those of the left colon nor
rectum’”. Independent of exercise and obesity, pro-
longed sedentary television viewing time (a surrogate for
an inactive lifestyle) is associated with risk of EOCRC,
particularly of the rectum’.

Against this backdrop, the exposomal elements that
match all four metrics are shown in TABLE 1. Although
additional information and many more experiments are
necessary to imply causation'”, these benchmarks pro-
vide an initial, logical framework for identifying putative
exposomal factors driving EOCRC and a rational sci-
entific premise for study. Importantly, new exposomal
factors and new mechanisms will probably be discovered
in experiments moving forward. Given the increasing
rates of EOCRGC, such discoveries within and outside
the purview of the four metrics will be welcome news
to those with EOCRC. Several examples that did not
reach the metrics are outlined in BOX 1.

Obesity

Globally, 2.16 billion adults are predicted to be over-
weight, and 1.12 billion to be obese, by 2030 (REFS'"'%).
Food habits have deteriorated worldwide owing to cheap,
readily available high-calorie sweeteners, advances

in food processing, and the influence of technology
on food and behaviour. There is no question that obe-
sity is increasing globally'*'~'**. Unsurprisingly, therefore,
many studies have linked obesity to EOCRC*#->%,
A reasonable hypothesis (at least for a portion of EOCRC
cases) is that the increased EOCRC incidence rates are a
result of the generational shift towards a higher BMI'*.
Supporting this understanding (and key to EOCRC) is
the fact that obesity and body fatness have been linked
to CRC later in life'”'"”. Owing to the decade(s)-long
process of carcinogenesis, a further hypothesis is that
the diagnosis of cancer in the second to fourth decade of
life might be a consequence of exposure decades earlier
(that is, before adulthood). However, studies have yet to
be published linking body fatness in infancy or mater-
nal obesity to EOCRC; furthermore, datasets for such
studies are difficult to find, and need to be identified
or created.

The mechanisms linking obesity and EOCRC are
poorly understood but might involve an interaction with
the internal exposome (for example, microbiome and
inflammation) and other specific exposomal elements
(such as food additives and low-quality foods). Indeed,
obesogenicity is associated with dysbiosis and inflam-
mation in humans'®'””. Moreover, body fatness during
childhood and/or adolescence has been associated with
unfavourable metabolic profiles that might exacerbate
the development of CRC*>'"’. Thus, a reasonable hypoth-
esis is that the detrimental role of body fatness and/or
obesity on later CRC risk might have started earlier in
life (such as through maternal obesity or obesity during
infancy and childhood). Dysbiosis and/or inflamma-
tion might be at the mechanistic crossroads of obesity
and EOCRC.

Notably, although obesity is associated with colon
cancer”’, evidence is weaker that it drives rectal can-
cer’°¢1%%111 This finding is important because the
observed increase in EOCRC is largely driven by an
increased incidence of rectal cancers''>'”*. Furthermore,
both nonobese and obese people develop EOCRC. These
findings all support the scientific premise that exposo-
mal elements outside of the worldwide obesity epidemic
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contribute to EOCRC. Complicating this picture,
evidence exists that caloric restriction in childhood can
increase CRC risk later in life''*!'4,

Perceived stress

Perceived stress (individual perception of psychosocial
stress) is an external exposomal element that requires
particular attention in the context of EOCRC. Not only
does stress increase the risk of rectal cancer'", but stress
during pregnancy can increase the risk of CRC in off-
spring''. The scientific premise for this hypothesis is
strong given the following factors: first, global increases
in perceived stress (including childhood and maternal
perceived stress) parallel increases in EOCRC in the past
four decades™'7~'"; second, a reduced amount of sleep
drives stress, obesity and CRC (and vice versa)''®'2-12%
third, obesity is linked to EOCRC and prenatal stress
is associated with obesity in the offspring''é; fourth,
psychosocial stress increases the risk of diabetes and
diabetes is linked to EOCRC''®'%; fifth, stress is asso-
ciated with reduced physical activity and deterioration
in diet'*; and sixth, the inflammatory milieu, innate
immunity, function of immune cells and the micro-
biome are compromised under stress''?, and a com-
promised immune system helps drive CRC'*. Stress
also causes genetic, epigenetic and microbial changes
not only in the stressed individual but in the offspring
of that stressed individual''®. Such generational trans-
fer, including aberrant DNA methylation, has been
linked to the genesis of CRC'*. Because psychosocial
stress modulates microbiota signatures in the gastro-
intestinal tract'”’, and gut microbiota have a key role
CRC development'?, stress-induced dysbiosis and
inflammatory load might also have a mechanistic role
in EOCRC'".

Box 1 | Potential exposomal elements affecting early-onset colorectal cancer

Dietary emulsifiers

e Can modulate the gut microbiota and inflammation??>**%%

* Candrive colitis, colon cancer and the metabolic syndrome

e Children are exposed”**¥’

Trans-fatty acids

233-235

¢ High levels in fast foods and deep-fried foods, bakery products, packaged snacks,

and margarines”**

¢ Global trans-fatty acid production and consumption (including children) has been
steadily increasing over the past several decades'*’***

* Might increase colorectal cancer (CRC) risk?****?

Acrylamide

¢ Prevalent in fast foods***

¢ Drives CRC in animal models

* Exposure occurs during development?****>

Sodium nitrate/nitrite

¢ Associated with activating KRAS mutations in humans

246

* Exposure occurs during development?*/*

A1 B-caseins

* In cow’s milk, are difficult to digest and exposure during development**°

* Exacerbate gut inflammation and the microbiome

250

¢ Drive DNA damage and CRC in animal models”*****

Diet

A large and consistent body of literature shows that the
adoption of a western diet, which is rich in red meat,
high in saturated fat and low in fibre, exerts a negative
effect on the colon and that healthier regimens, such
as a Mediterranean diet, promote a healthy colon'”.
Interestingly, a western dietary pattern increases risk
specifically in the distal colon and rectum'*"*° (EOCRC
tends to affect the distal colon or rectum), whereas a
Mediterranean diet seems to protect the entire colon
and rectum from CRC. A western dietary pattern also
has been shown to be associated with tumours that are
KRAS wild-type, BRAF wild-type, have no or alow CpG
island methylator phenotype (CIMP) and are MSS™.
Given that a large subset of patients with EOCRC tend
to have tumours that are KRAS** (REFS”>"*!), BRAF""*
(REFS06:7376132-134) CIMPl (REFS7475:135-137) and MSS*75,
linking diet to molecular features of EOCRC (and
subsets of EOCRC) would advance our knowledge.

A western diet also drives gut dysbiosis'** and inflam-
mation'”, and an increasing number of children (world-
wide) are eating diets high in refined carbohydrates,
added sugars, fats and animal sources'"’. Arguing against
linking a western diet to EOCRC is the understanding
from an epidemiological standpoint that EOCRC is
increasing both in areas with heavy consumption of a
western diet (such as the USA and Canada)®*>'*! and of
a Mediterranean diet (for example, Egypt)'*>. However,
global food supplies are increasingly homogeneous'*,
and countries with people traditionally consuming a
Mediterranean diet have been adopting an increas-
ingly westernized diet'**'*. Likewise, we have observed
this trend in other parts of Africa, Asia and Latin
America'*>',

Augmenting the unhealthy nature of a westernized
diet is the cooking style typically used. For exam-
ple, frying (especially deep-frying) can generate pro-
inflammatory and pro-carcinogenic advanced glycation
end-products (AGEs)'*. These molecules are highly
oxidant compounds formed through the nonenzymatic
reaction between reducing sugars and free amino acids.
Animal-derived foods that are high in fat and protein
are generally AGE-rich and prone to new AGE forma-
tion during cooking. By contrast, nutrient-rich foods
such as vegetables, fruits, whole grains and milk con-
tain relatively few AGEs, even after cooking'*’. Cooking
time, cooking style, cooking temperature and the pres-
ence of moisture also dictate the level of AGEs. AGEs
contribute to metabolic syndrome'”’, drive gut dysbio-
sis'*® and might have a role in type 2 diabetes mellitus,
cardiovascular disease and even Alzheimer disease'®.
Additionally, AGEs are transferred through maternal
blood, prematurely raising levels of AGEs in children
to adult norms, preconditioning them to abnormally
high oxidative stress and inflammation and thus pos-
sibly to early onset of disease, such as diabetes'*” and
possibly EOCRC.

The Dietary Inflammatory Index (DII) was devel-
oped to characterize the inflammatory potential of diet.
Just as a Mediterranean diet has low AGE levels', the
same diet has a particularly low DII''. Diet-associated
inflammation, as measured by the DII, is strongly and
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consistently related to CRC incidence and mortality
across a wide variety of racial and ethnic groups'*.
The DII has also been used to quantify the relationship
between food and inflammation and other risk factors
including weight gain and obesity'**"'*°. Given the evi-
dence linking diet, inflammation and CRC, a higher DII
score might contribute to EOCRC, as we have seen in
numerous studies among older individuals with CRC"*.
However, this hypothesis has not been tested in a direct
and rigorous manner.

Red and processed meat

A role for red and processed meat in CRC development
has been proposed, largely on the basis of evidence from
epidemiological studies, especially in those populations
consuming a westernized diet*>*”'*. Red and processed
meat reaches the four metrics for study in that consump-
tion and production have increased globally and in chil-
dren since the 1960s'”. In addition, red and processed
meats have pro-inflammatory and dysbiosis-promoting
properties'®'¢!. We predict that inferring causation of
EOCRC by red or processed meat will be supported by
future mechanistic studies.

Antibiotics

Antibiotic over-use is a serious public health concern.
More than 1 million doses of antibiotics are prescribed
unnecessarily in the USA every year, and 50% of
infants are exposed directly to antibiotics for >5 days'®.
Furthermore, indirect antibiotic exposure through
pregnancy is high and can have persistent effects on the
infant microbiota after birth'’. Antibiotic overexposure
at an early age has been correlated with multiple health
disorders, including obesity'**'**. Epidemiological stud-
ies support an association between antibiotic exposure
and CRC'*'%,

Adding to the scientific premise that antibiotics
influence colon health and CRC genesis, repeated
short-term or long-term exposure (possibly at windows
of vulnerability) contributes to antibiotic resistance and
alters the gut microbiota with pro-inflammatory
and pro-carcinogenic consequences'®~""". The sugges-
tion of developmental windows of vulnerability to anti-
biotics is supported by studies consistently showing that
antibiotic use in infancy increases the risk of childhood
obesity'’>'”* (which is linked to EOCRC). Although
animal models support the notion that heavy antibiotic
use can drive gastrointestinal cancers'”*, studies are not
always consistent'”>"'””. Some studies have shown that
antibiotics can protect against CRC, probably owing
to the fact that specific microorganisms (for example,
Fusobacterium) can drive CRC"® . Thus, inconsistencies
across studies are not surprising and highlight the need
for carefully controlled, scientifically rigorous studies
that consider and delineate ‘bad’ versus ‘good’ bacteria,
developmental timing and exposure, and type and dose
of antibiotic. Addressing this knowledge gap is critical
to counter the effects of repeated exposure or long-
term antibiotic use. Notably, other drugs targeting the
gastrointestinal tract, such as proton-pump inhibitors,
have also been associated with gut dysbiosis'”’, and thus
might also affect the risk of EOCRC.
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Dietary additives
Changes in agricultural practices over the past four dec-
ades have resulted in a considerable shift in food quality
and consumption both globally and regionally (reviewed
in detail elsewhere'®). The health consequences result-
ing from these changes are only beginning to be under-
stood; however, the consequences generally fit with the
models proposed here in that the result is an increase in
consumption of energy-dense foods (leading to obesity)
and a decline in nutrient content (which affects every-
one, regardless of weight). Furthermore, some of the
fillers and additives are themselves carcinogenic'®’.
Ingredients that have found their way into our food
supply range from thoroughly tested chemicals that, so
far, have been found to be inert, to known carcinogens
or pre-carcinogens such as nitrates and nitrites in pro-
cessed meats. Indeed, nitrate exposure through drinking
water has been shown to be associated with CRC'*, and
intake of nitrite-containing processed meat is associated
with increased CRC risk'®. Mechanistically, nitrite con-
sumption can lead to the formation of N-nitroso com-
pounds, some of which are carcinogenic. The addition
and subtraction of food ingredients is too vast to cover in
this Review, and the historical nature of changes in food
content over the past 40 years has been covered else-
where'®. Indeed, many of the new exposomal elements
found in contemporary diets meet our four metrics as
summarized in TABLE | and outlined below.

Synthetic food colouring. Toxicity and carcinogenicity
studies on synthetic food colouring have been reviewed
elsewhere'®'%, Synthetic dyes are added to our food and
consumed throughout the world. Three dyes (Allura
Red, tartrazine and Sunset Yellow) account for 90% of
all dyes used in food in the USA'®. They are used to
attract consumers and are especially attractive to chil-
dren. Importantly, dye consumption per person has
increased fivefold since 1955 (REF'®*). Thus, in the context
of EOCRC, these synthetic products are highly suspect
and require scientific scrutiny. Synthetic food dyes are in
breakfast cereals, candy, snacks, beverages, vitamins, and
other products aimed at children. In 2010, the European
Union placed warning labels on foods that contain syn-
thetic food dyes. Although the implications of such
measures are yet to emerge (for EOCRC), it is concern-
ing that measures have not been taken in the USA, nor
in most other countries outside of the European Union.
This fact is alarming because of the scientific premise
supporting a role for synthetic dyes in carcinogenesis.
Allura Red is used as an example because it is a
highly common synthetic dye'* and meets all met-
rics outlined in TABLE 1. Allura Red (like tartrazine,
Sunset Yellow and other synthetic food colourings)
is a sulfonated mono azo dye and, as such, is metabo-
lized by intestinal bacteria'*'"' through azo-reduction
and has pro-inflammatory properties'*>-'¥71921% The
Acceptable Daily Intake (ADI) for Allura Red is cur-
rently set at 7mg/kg daily on the basis of antiquated
data’*. Although this ADI was confirmed by a joint
Food and Agriculture Organization-WHO Expert
Committee on Food Additives in 2016 (REF.'¥), the lack
of scientifically rigorous original studies regarding the
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impact of Allura Red on health is clear; the committee
could draw from only seven original studies since 2010.
Strikingly (and consistent with our findings from search-
ing the biomedical literature), original data examining
the effect of Allura Red on carcinogenesis is lacking.
Of the four studies regarding the effect of Allura Red on
the colon"'%>-18 three of these studies (albeit conducted
by one group) found colonic DNA damage in rats follow-
ing consumption of 10 mg/kg daily of Allura Red'*"'*"**%,
The other study found negative results, although the
authors were affiliated with the International Association
of Color Manufacturers and The Coca-Cola Company'*.
Regarding human exposure, 10 mg/kg daily in rats is the
equivalent of 72 mg daily for a 30-kg human child'”.
Although average human exposure to Allura Red is
below the ADI'¥, one serving of some popular beverages
that children consume contains >50 mg Allura Red'***.
Considering these facts, we suggest that Allura Red is
a key prime suspect that needs scientific attention and
has been understudied in the context of carcinogenesis
and EOCRC.

Monosodium glutamate. Monosodium glutamate
(MSQG) is produced through the fermentation of starch,
sugar beets, sugar cane or molasses and was introduced
as a food flavouring in the early 1900s. It is a common
food additive used to intensify and enhance the flavour
of savoury dishes. It is found in a variety of processed
foods such as frozen dinners, salty snacks and canned
soups, and is also often added to restaurant foods.
MSG is worth considering as an ingredient stimulating
EOCRC as it meets the metrics for hypothesis testing
(TABLE 1). In particular, global consumption of MSG
has increased in the past 50 years'*, and it has pro-
inflammatory properties'*. Additionally, MSG is used to
induce obesity and diabetes (both of which are linked
to EOCRC)****'* in animal models*”". Interestingly, the
MSG diabetes model renders mice more susceptible to
azoxymethane-induced CRC**.

Titanium dioxide. Titanium dioxide (TiO,) is a natu-
rally occurring metal oxide and is an engineered nano-
material commonly used in daily consumer products,
including food. The food additive TiO, (also known as
E171) is commonly used as a whitening and brightening
agent in confectionery, white sauces and icing (all foods
typically targeted towards, and consumed by, children).
In the USA, the FDA approved the use of food-grade
TiO, in 1966 with the stipulation that levels must not
exceed 1% of the food weight*”. However, the increas-
ingly common use of TiO, leads to substantial levels
of daily dietary intake. Human exposure analyses on
foods consumed among American and British popula-
tions report that children <10 years of age have higher
exposure to TiO, than adults****. Although the reader
is guided to other reviews on the subject of TiO, in food
and health?**, insufficient research is being carried out
regarding the impact of TiO, on colon carcinogenesis.
Importantly in the context of EOCRC, TiO, as a food
additive has been demonstrated to facilitate growth of
colitis-associated colorectal tumours in animals****"’.
In addition, food-grade TiO, changes the expression of

colonic genes involved in immune responses, oxidative
stress, DNA repair, xenobiotic metabolism, cancer path-
way signalling and, interestingly, genes involved in olfac-
tory and serotonin signalling””-*”". As with the other
suspects discussed, TiO, reaches the metrics already
outlined (TABLE 1) to support the scientific premise of
studying the effect of TiO, on EOCRC.

High-fructose corn syrup. High-fructose corn syrup
(HFCS) has been used in beverages for decades. The
technology to produce it was developed in the 1960s
and it was introduced to the food and beverage indus-
try as a liquid sweetener alternative to sucrose (sugar)
in the 1970s. Made from abundant corn, by the mid-
1980s HFCS had fully replaced sucrose in most bever-
ages in the USA*'". Recognizing that EOCRC is linked
to obesity***>% and that obesity is associated with
high consumption of HFCS?", examining the effect of
HEFCS on EOCRC makes sense. The literature provides
a compelling scientific premise for study. Consumption
of fructose-rich beverages leads to increased gain in
body weight’"?, and intermediate biomarkers associ-
ated with obesity can be reversed if HFCS is replaced by
glucose””. The harmful effects of fructose also can be
found from the first months of life. Children of mothers
who consume fructose have increased body weight, food
intake and circulating levels of leptin, and decreased
insulin sensitivity’'*. Importantly, HFCS meets the four
metrics for investigation (TABLE 1). In particular, con-
sumption has increased in the USA and globally since
the early 1970s*°. HFCS also has pro-inflammatory
and dysbiotic properties*'® and children are generally
exposed to higher doses than adults?””. Only in the past
few years have mechanistic animal experiments started
to reveal the effect of HFCS on the gut. HFCS-treated
mice show a substantial increase in gut tumour size and
tumour grade in Apc™™* mice in the absence of obesity
and metabolic syndrome?*****. The effect of HFCS on the
distal colon and rectum is unknown.

Microbiome link to EOCRC

The scientific premise supporting a mechanistic
link between gut microbial dysbiosis and CRC is
strong®#****!, Approximately 1,000 different species of
microorganisms, comprised of trillions of cells, reside
in the gut®'. Although the overall picture remains
blurry, the microbiota provides many targets for the
exposome. Indeed, specific microorganisms (such as
Fusobacterium nucleatum, Escherichia coli, Bacteroides
fragilis and Salmonella enterica) have been identified as
having a key role in colon carcinogenesis'’****. Infection
with pathogens could contribute to neoplastic develop-
ment through different mechanisms, including intestinal
dysbiosis, inflammation, evasion of tumoural immune
response and activation of protumoural signalling
pathways, such as -catenin*”.

Gut microbiota and their host share a symbiotic and
intricate relationship that benefits both the microbiome
and the host. Microorganisms maintain gastrointestinal
homeostasis and (under healthy circumstances) pro-
tect the gut against inflammation and cancer. However,
certain elements of the exposome (that is, any general
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Fig. 1| The effect of the exposome and early-life environmental exposures on microbiome health. Exposomal
elements that modulate the gut microbiome include not only those elements meeting the four metrics discussed in this
Review (such as stress, antibiotics and dietary factors; TABLE 1) but also elements previously thought to be disconnected
from colon health, such as birth mode, breastfeeding behaviours and maternal stress and nutrition. In turn, given the
role of the microbiome in disease genesis (and the role of the microbiome in maintaining gut health) it probably has a
key role in guiding colonic health and development of colorectal cancer. This role might or might not be mediated by
obesogenic pathologies. EOCRC, early-onset colorectal cancer; MSG, monosodium glutamate.

external exposomal element (such as stress), specific
exposomal elements (such as antibiotics and synthetic
food dyes), or internal exposomal elements (for exam-
ple, inflammation))'""* can affect the gut microbiome
leading to dysbiosis (FIC. 1). In turn, dysbiosis can have
a direct effect on the mechanisms that lead to CRC. For
example, certain microbiota can mediate the effects of
diet on colon cancer risk by their generation of butyrate,
folate and biotin (molecules known to have a key role
in the regulation of epithelial proliferation). Colorectal
cancer-associated microbiota contributes to oncogenic
epigenetic signatures*”’. High-fat diets can cause intes-
tinal dysbiosis, leading to the accumulation of harmful
bacterial products such as lipopolysaccharides that can
enter the intestinal circulation and cause inflamma-
tion**’. As another example, dietary emulsifiers (used to
aid texture and extend the shelf-life of processed foods)
modulate the gut microbiota and drive colitis and met-
abolic syndrome®”. Given that both colitis and obesity
are associated with EOCRC">!%°7107226:227 3 reasonable
hypothesis is that dietary emulsifiers drive EOCRC
as well. Initial studies have shown that these agents
cause dysbiosis and increase the incidence of CRC in
animal models**.

Exposomal elements that modulate the gut micro-
biome include not only those elements meeting the above
metrics (such as stress, antibiotics and dietary factors)
but also elements previously thought to be disconnected
from colon health, such as birth mode, breastfeeding
behaviours and maternal stress and nutrition''****>%,
Exposure to antibiotics, stress and harmful dietary
components can lead to microbial dysbiosis, and these
exposures can occur during development. Furthermore,
the degree to which the microbiome is at the crossroads
of the exposome and EOCRC might be dictated by the

timing of exposure. However, testing the hypothesis that
dysbiosis in early human development causes molecular
changes and dangerous lesions that render the colon at
increased risk of transformation in early adulthood is a
particular challenge. For example, samples would need
to be collected (stool and preferably colonic tissue, and
preferably at multiple times during development) during
a specific (yet unknown) time frame, and then linked to
CRC development decades later. As yet we are unaware
of the existence of such a valuable resource. The integra-
tion of other confounding exposomal elements during
development (probably involving diet) adds to the com-
plexity of solving the EOCRC problem in the context of
microbial dysbiosis. The advancement of machine learn-
ing and artificial intelligence in biomedical research and
personalized medicine might help to address these issues.

Conclusions

Regrettably, the alarming rise in EOCRC described
by epidemiological studies has yet to be followed up by
well-designed observational and intervention stud-
ies in humans or mechanistic animal experiments. A
working group, Fight Colorectal Cancer, has been con-
vened to determine priorities for research of EOCRC*.
Consistent with this Review, recommendations were
made for prioritizing targeted, large, epidemiological
studies and the need to tease out the causative factors and
the genes involved in a scientifically rigorous fashion.
Here, we have complemented these recommendations
by rationally identifying prime suspects worth further
investigation. To address the rise in EOCRC, some
solutions can be deployed now (for example, awareness
through educating physicians and patients), some can
be deployed with additional work to overcome barriers
(such as novel or modified screening techniques and
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Deploy now

¢ Education and awareness (physician and patient)

¢ Genetic testing (for all family members with CRC)

® Re-evaluate screening guidelines for EOCRC

e Streamline and coordinate care and communication

Deploy but barriers
* Whole-genome sequencing for high-risk patients
* Whole-genome sequencing for all
e Gene testing for all with family member with CRC
¢ Colonoscopy and/or widespread screening and/or cost effectiveness
e Risk-adapted screening
e Streamline and coordinate care and communication
- Patient-physician relationship
- Access and policy barriers
- Manage care teams for high-risk patients and family members
- Monitor high-risk patients and family members

Deploy with money, time, ingenuity and scientific rigour

Explore unanswered questions and mechanisms of EOCRC

* Are specific exposomal elements driving EOCRC?

© Are combinations of exposomal elements driving EOCRC?

* What gene-environment interactions drive EOCRC?

* What genetic or epigenetic signatures are associated with suspected exposomal
elements?

* What genetic or epigenetic signatures render the colon at increased risk of developing
EOCRC owing to the exposome?

e Are there specific periods of development that place the colon at risk of carcinogenic
events owing to the exposome?

* What role does obesity have in EOCRC?

* What role does the microbiome and inflammation have in EOCRC development?

¢ Epidemiological and human intervention studies

e Large confirmatory studies (prospective studies, artificial intelligence and/or big data)

Fig. 2 | Solutions for EOCRC. To address the rise in early-onset colorectal cancer (EOCRC),
solutions can be deployed now, deployed with additional work to overcome barriers and
deployed with money, time, ingenuity and scientific rigour. CRC, colorectal cancer.

surrogate end points, and improved protocols and guide-
lines); and some solutions can be deployed with money,
time, ingenuity and scientific rigour (for example, to
arrive at a better understanding of the mechanisms and
gene—environment interactions) (FIG. 2).

Our understanding of how ingredients that have
become common in foods over the past four decades
might individually increase or combine to increase the
risk of EOCRC is woeful. This factor is highlighted by
the finding that, despite a wide swathe of the (global)
population (particularly children) being exposed*”, only
four articles relevant to the effect of Allura Red on colon
carcinogenesis could be identified'*"'**~"**, Importantly,
food constituents rarely exert their effects individually

and so these agents should be considered as part of larger
(usually unhealthy) dietary patterns (which is why the
DII was developed).

How this global nutrition transition affects the colon
remains confusing. Future efforts should explore the
effect of timing and dose of suspected elements, and
the mechanisms by which they might drive EOCRC.
Does one or more of the exposomal elements high-
lighted in TABLE 1 drive CRC at a young age? Do these
elements interact with the genetic background of the
individual? What genetic factor(s) increase the risk for
sporadic EOCRC? Is age at exposure critical to risk?
We hope that such questions will be answered, and that
this Review sparks additional questions and hypothesis
testing. On the basis of the evidence and logical clues
outlined above, the globalization of western diets, fast-
food cooking styles, the infiltration of our food by poorly
understood artificial ingredients and processing tech-
niques might help to explain the increasing incidence
of EOCRC. Until mechanistic studies are carried out,
however, we will not know for sure. In addition, high
levels of stress and the increasing use of antibiotics place
the colon at increased risk of cancer development. The
microbiome and/or the inflammasome are likely to be
at the crossroads of the link between these exposomal
elements and EOCRC.

We posit that if other elements of the exposome are
uncovered as prime suspects through attaining all four
EOCRC metrics (TABLE 1), then they should be seri-
ously investigated. With access to big data, other expo-
somal suspects might become clear moving forward.
Only after the hypotheses are tested and the clues are
investigated can we tackle this challenging disease in a
specific and deliberate manner. In the interim, aiming
for a healthy lifestyle index (restricting a western-style
diet and encouraging a Mediterranean or other mainly
plant-based diet), reducing consumption of low-nutrient
additives (such as artificially coloured foods and syn-
thetic food colourings), reducing stress, maintaining a
healthy weight, and reducing gastrointestinal-targeting
drug consumption (especially antibiotics) will prob-
ably reduce EOCRC risk. An attainable goal is to use
machine and deep learning (that is, artificial intelli-
gence) algorithms in connecting exposomics to taxo-
nomics to generate a weighted-risk signature for targeted
chemoprevention of EOCRC.
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